Русские видео

Сейчас в тренде

Иностранные видео


Скачать с ютуб Subsampling PLLs for Frequency Synthesis and Phase Modulation - Nereo Markulic, IMEC в хорошем качестве

Subsampling PLLs for Frequency Synthesis and Phase Modulation - Nereo Markulic, IMEC 2 года назад


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса savevideohd.ru



Subsampling PLLs for Frequency Synthesis and Phase Modulation - Nereo Markulic, IMEC

ES2-4 Subsampling PLLs for Frequency Synthesis and Phase Modulation Nereo Markulic, IMEC, Leuven, Belgium The tutorial starts with a basic/introductive overview of modern frequency synthesis techniques, delivering basic operation theory in an intuitive fashion. A point of attention is in this context brought to recent subsampling PLL architecture. This architecture overcomes the performance boundaries typically encountered in classical implementations and is redefining today’s state-of-the state of art in frequency synthesis. We will try to explain why. The following part of the tutorial explores the subsampling loop in context of state-of-the art fractional synthesis and phase modulation. We show how to enable fractional-N multiplication modes, while retaining benefits of low-noise subsampling operation. This can be achieved by introducing digital-to-time converter (DTC)-based time domain signal processing. We will discuss potential limitations of this block, and how to overcome them in the analog, or in the digital domain. The versatility of the DTC-based subsampling PLL will further be discussed in context of phase/frequency modulation, which is crucial for accurate polar signaling. We will investigate classical loop-bandwidth limitations and explore how two-point modulation principles can elegantly be applied in context of the explored loop. We will openly discuss potential weak-points of this environment – and how to address them. This talk insists on an intuitive, rather than a strict, mathematical approach to PLLs. It starts from the basic concepts and then gradually expands in complexity, while clearly highlighting the key ideas and pointing to state-of-the-art embodiments.

Comments